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A new approach for structure determination of native and O-desulfated fucoidans by the
analysis of their 13C NMR spectra by artificial neural networks (ANNs) is described.
Two ANN models were studied: the simple three-layer feed-forward network, which
employs supervised learning, and the adaptive resonance theory (ART) network with
unsupervised learning. Training sets for the networks were constructed using chemical
shifts of synthetic oligofucosides. The results obtained demonstrate that both models
worked better in the case of desulfated fucoidans, while the ART-type networks gave
better results in sulfated (native) fucoidan structure elucidation.

Keywords Fucoidans; Structure elucidation; NMR spectra; Feed-forward neural net-
work; Adaptive resonance theory

INTRODUCTION

To analyze and determine the structure from the NMR spectrum, an incremen-
tal approach has been used widely and successfully for many classes of organic
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Application of Artificial Neural Networks 93

compounds and also for carbohydrates.[1] The approach requires a database of
chemical shifts and so-called increments, which in the case of polysaccharides
are glycosylation and substitution effects, and sometimes corrections to these
increments, so-called deviations from additivity.[2] Thus, such an algorithm can
be used to model an NMR spectrum for the known structure. In the case of
saccharides, it can be applied for structure elucidation with the prerequisite
knowledge of the monosaccharide composition.

However, an alternative method exists to model a spectrum for a known
structure. This mathematical algorithm is called the artificial neural network
(ANN). The use of artificial neural networks in chemical spectroscopy was sug-
gested by several authors. The examples include the prediction of 13C chemical
shifts for substituted aromatic compounds,[3] other classes of organic struc-
tures,[4] and saccharides.[5] In all the cited works a spectrum was generated
for a known or supposed structure. In our work we investigate the possibility
of solving the reverse problem: the direct determination of a structure from a
spectrum.

Two advantages can be thought of for this approach. First, this algorithm
should ideally function in the manner similar to that of a chemist analyzing a
spectrum, so no assumptions about the complexity of a molecule are needed as
it is deduced automatically by the presence and the number of some charac-
teristic groups of signals. This is especially useful when dealing with spectra
of highly irregular polysaccharides. The second advantage is that ANN is ex-
pected to work more rapidly than traditional incremental methods due to its
massive parallelism.

Fucoidans form a class of such irregular highly sulfated polysaccharides
that consist mainly of α-L-fucose with some galactose, xylose, mannose, and
uronic acid as carbohydrate components. Their structural diversity is still
poorly understood. Meanwhile, these biopolymers are characterized by differ-
ent types of biological activity and thus are interesting objects for structural
studies. Recently, a large number of oligofucosides have been synthesized in
our group and their 13C NMR spectra have been recorded.[6–8] We attempted
to use these NMR data for the analysis of spectra of some native fucoidans
along with their desulfated modifications by two artificial neural network
models.

RESULTS AND DISCUSSION

General Considerations and Computational Details
Software used in this work was Stuttgart Neural Network Simulator

(SNNS), v. 4.2 ( C© 1990–1995, IPVR, University of Stuttgart, C© 1996–1998,
WSI, University of Tübingen) for the feed-forward networks, and ART Gallery
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94 A.G. Gerbst et al.

SNNS routineSNNS routine
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Trained
Network
Trained
Network C functionC function

Figure 1: Algorithm used in this work.

v. 1.0 (developed by Lars Liden, URL: http://cns-web.bu.edu/pub/laliden/
WWW/nnet.frame.html) for adaptive resonance theory (ART)-type networks.

The idea before this investigation was to construct an ANN that would
be able to recognize various classes of fucose residues by their characteristic
chemical shifts. To the best of our knowledge, only one work has been published
dedicated to the analysis of fragments of 1H NMR spectra.[9] Both software
suites used in this work provide facilities to convert a trained network into a C-
code function, which in turn could be incorporated into a homemade program.
In our case, we made this function work together with routines generating
possible combinations of signals from a given spectrum, presenting them in a
form suitable for ANN input, then taking the ANN output and presenting it in
a human readable form (Fig. 1).

Simple Feed-Forward Networks
This type of ANN is the most common and includes, among the exam-

ples of its successful employment for chemical needs, the prediction of NMR
chemical shifts,[11] vapor pressures,[12] binding affinities,[13] and many others.
The principal scheme of simple three-layer feed-forward ANN is shown in
Figure 2.

The goal of this approach is to train ANN by the use of pairs “input →
desired output” forming the training set to reproduce correct outputs for in-
put values not presented to the network during learning. In our case, the in-
put vectors were formed of six 13C chemical shifts corresponding to a certain
monofucoside residue, which gave six input neurons, each taking one chemical
shift as its activation value. Output neurons corresponded to different classes
of fucose residues that were found among the synthetic oligofucosides. Obvi-
ously, the activation of output neurons, a value from the range 0 to 1, could be
interpreted as the probability of the input belonging to that class. It was found
that different types of fucosylations for the glycosylating residue (especially
O-2 vs. O-3) could not always be distinguished using feed-forward networks.
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Application of Artificial Neural Networks 95

Figure 2: General structure of three-layer feed-forward neural network constructed with
Stuttgardt Neural Network Simulator (SNNS).

Therefore, we had to keep the number of classes to a minimum in the case of
feed-forward ANN and used 19 output neurons for 19 classes.

The number of neurons in the hidden unit for feed-forward networks is
often chosen using the “trial and error” method. On the one hand, it should
be large enough for the network to be capable of learning the dependence be-
tween the output and input. On the other hand, very large dimensions of the
hidden layer slow down the network performance significantly. Another point
to keep in mind is that besides the training set, the network also needs a so-
called validation set (i.e., input-output pairs not shown to the network during
training but used to test the overall error of the trained network). Training is
usually stopped at the minimum of a validation error. In our case, we could
not construct the validation set and thus measure the validation error directly.
Instead, snapshot networks were written to disk during training and then con-
verted to C language functions and used to test the performance of the net-
work on the spectra of polysaccharides and higher oligofucosides, as shown in
Figures 3 and 4.

It turned out that the best results could be achieved when the number
of neurons in the hidden layer was set to 40. Also, several learning algorithms
were tested. Among them, the resilient back-propagation function[15] was found
to perform best. Software default update and initialization functions were used
(topological order and weight randomization, respectively).

First, the training pattern set was created using chemical shifts of syn-
thetic oligofucoside structures up to trisaccharides. The results obtained after
the training procedure are presented in Table 1. The score column in Table 1 is
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Figure 3: Tetrasaccharides used to test the feed-forward ANN behavior.

the average neuron activation for all groups of signals identified as belonging
to the given class. These results are still not satisfactory. For the test oligofu-
cosides, besides the fragments really present in the structures, some residues
were identified with a high score, which did not belong to them. For exam-
ple, a 2,3-branched fucose residue was found during the analysis of chemical
shifts of linear tetrafucoside 1, and in the case of sulfated tetrasaccharide 3
two false residues were found. Also, residue Fuc-x, nonsubstituted glycosy-
lating fucose, was identified with a high score for nonsulfated fucoidan from
Fucus evanescens. It can be noted that the performance of the ANN in the case
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Figure 4: Structures of polymers used to test the ANN behavior. A: Deacetylated form of
fucoidan from F. evanescens.[13] B: Deacetylated form of fucoidan from F. distichus.[14] C:
Deacetylated and desulfated form of fucoidan from Fucus evanescens.
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Table 1: Results obtained with the feed-forward network for tetrafucosides 1–5 and
polysaccharides A–C (Fig. 4)

Compound Found residuesa Score

1 Fuc(1→x 0.9214
→2,3)FucOPr 0.9166
→3)Fuc(1→x 0.8901

2 2-O-sulfo-(→3)Fuc(1→x 0.9127
Fuc(1→x 0.8889

3 →2)-3,4-di-O-sulfo-Fuc(1→x 0.9162
→3)-2,4-di-O-sulfo-Fuc(1→x 0.9149
→3)-4-O-sulfo-Fuc(1→x 0.8986

4 Fuc(1→x 0.9437
→2,3)Fuc(1→OPr 0.9118
→2)Fuc(1→x 0.8892
→3)Fuc(1→x 0.8453

5 Fuc(1→x 0.9308
→3)Fuc(1→x 0.9009
→4)Fuc(1→x 0.8744

A →2,3)Fuc(→OPr 0.8808
→4)-2-O-sulfo-Fuc(1→x 0.8344
4-O-sulfo-Fuc(1→x 0.8228

B →3)-2,4-di-O-sulfo-Fuc(1→x 0.8955
→4)-2-O-sulfo-Fuc(1→x 0.8492
→2)Fuc(1→x 0.8263

C Fuc(1→x 0.9121
→3)Fuc(1→x 0.8924
→4)Fuc(1→x 0.8890

aAll fucose units have α-L-configuration.

of nonsulfated compounds is somewhat better than in the case of the sulfated
ones.

The way to correct the network recognition ability could be the inclusion of
additional patterns from higher oligosaccharides and perhaps from polymers
with the already determined structure into the training set. However, this at-
tempt resulted in slowing down of the network training, while the distinguish-
ing and recognition ability of the network did not increase significantly. It was
concluded that the feed-forward network could not serve as an instrument for
solving our problem: it did not distinguish between the positions of fucosyla-
tion for the glycosylating residue, and its overall capability to correctly identify
signal groups appeared to be poor.

ART Networks
The adaptive resonance theory was first introduced by S. Grossberg in

1976.[16,17] Its primary application is for pattern classification and recognition.
The ART-type ANNs have significantly more complicated topology than the
feed-forward networks, and unlike the latter, they do not need output values
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98 A.G. Gerbst et al.

for their training. The goal of their learning process is to divide input pat-
terns into several classes based on their similarity. The decision of putting a
pattern into a class is made exclusively by the network; hence, this is called
unsupervised learning. After the learning is finished, the network is presented
by a pattern and decides to which of the already existing classes it belongs, or
produces the answer “unclassified” if the pattern seems to belong to none.

ART1 is an ART-type ANN that can only deal with binary inputs (i.e., vec-
tors containing only 0s and 1s).[18] Therefore, first we had to convert real values
of chemical shifts into binary strings. As in this work we only planned to deal
with fucose residues, the spectrum in a region from 15 ppm to 105 ppm was of
interest to us. It yields 90 ppm range, which if accuracy of 0.1 ppm is used, can
be represented as 900 points. Each point is assigned the value of 0 if no chem-
ical shift corresponds to it, and 1 if there is one. Thus, the task of the ART1
network was to classify binary strings consisting of six 1s and 894 0s. After
that, the network could be used within our homemade program for spectra
analysis in a way similar to that of the feed-forward networks.

In the case of ART networks, the number of classes into which the patterns
are divided plays an important role. If the network is not very strict about
finding varieties between the inputs, several patterns may appear in the same

Table 2: Results of ART1 ANN testing

Structure determined
Discovered by the combination of

Fucoidan fragmentsa NMR chemical methods

De-O-sulfated and
de-O-acetylated
fucoidan from F.
evanescens

→4)Fuc(1→, →3)Fuc(1→ →4)Fuc(1→3)Fuc(1→

3-Fuc 4-Fuc
2 2

SO3
- SO3

-

(ref. 13)

De-O-acetylated
fucoidan from F.
evanescens

→4)-2-O-sulfo-Fuc(1→,
→3)-2-O-sulfo-Fuc(1→

3-Fuc 4-Fuc
2

4

2

SO3
-

SO3
- SO3

-

(ref. 14)

De-O-acetylated
fucoidan from F.
distichus

→3)-2,4-di-O-sulfo-Fuc(1→,
→4)-2-O-sulfo-Fuc(1→

aAll fucose units have α-L-configuration.
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Application of Artificial Neural Networks 99

Table 3: Structural fragments whose 13C NMR chemical shifts were applied to
construct the training set for ANN

Structure Used structural Structure Used structural
codea fragmenta code fragmenta

- Fuc(1→OPr (f2s3f→3F2→f2s) →2,3)Fuc(1→OPr
(F2f) Fuc(1→2 (F2s3f23ff2s) 2-O-sulfo-Fuc(1→3
(F2f4s) Fuc(1→2 (f2s3F23ff2s) →3)Fuc(1→3
(f23Ff) Fuc(1→2 (f2s3f-3f2-F2s) 2-O-sulfo-Fuc→2
(f4s23Ff) Fuc(1→2 (F34ff) →3,4)Fuc(1→OPr
(f3f23Ff) (4) Fuc(1→2 (f34Ff) Fuc(1→3
(F3f) Fuc(1→3 (F23ff4sss) 4-O-sulfo-(→2,3)Fuc(1→OPr
(F3f4s) Fuc(1→3 (F4s23f4sf) →2,3)-4-O-sulfo-Fuc(1→OPr
(f23fF) Fuc(1→3 (F4s23ff) →2,3)-4-O-sulfo-Fuc(1→OPr
(f4s23fF) Fuc(1→3 (f4s23f4sF) Fuc(1→3
(F3f3f) (1) Fuc(1→3 (f4s23F4sf) 4-O-sulfo-Fuc(1→2
(F3f3f3f) Fuc(1→3 (f23Ff4sss) 4-O-sulfo-Fuc(1→2
(F3f23ff) (4) Fuc(1→3 (f23fF4sss) 4-O-Fuc(1→3
(F4f) Fuc(1→4 (f2F4s) →2)-4-O-sulfo-Fuc(1→OPr
(f34fF) Fuc(1→4 (f2F4ss) 2→)-4-O-sulfo-Fuc(1→OPr
(f2F) →2)Fuc(1→OPr (F2f4ss) 4-O-sulfo-Fuc(1→2
(f3F) →3)Fuc(1→OPr (F3f2ss) 2-O-sulfo-Fuc(1→3
(f3f3F) (1) →3)Fuc(1→OPr (f3F2ss) 3→)-2-O-sulfo-Fuc(1→OPr
(f3f3f3F) →3)Fuc(1→OPr (F3f3f2sss) (2) 2-O-sulfo-Fuc(1→3
(f3F3f) (1) →3)Fuc(1→3 (f3F3f2sss) (2) 3→)-2-O-sulfo-Fuc(1→3
(f3f3F3f) →3)Fuc(1→3 (f3f3F2sss) (2) 3→)-2-O-sulfo-Fuc(1→OPr
(f3F3f3f) →3)Fuc(1→3 (f24ss3F2s) 3→)-2-O-sulfo-Fuc(1→OPr
(f4f3F4f3F4f) →3)Fuc(1→4 (f3f-3f2-F4ssss) 4-O-sulfo-Fuc(→2
(f4F) →4)Fuc(1→OPr (f3f23fF4ssss) →2,3)-4-O-sulfo-Fuc(1→OPr
(f4F3f) (5) →4)Fuc(1→3 (F3f23ff4ssss) 4-O-sulfo-Fuc(1→3
(f4f3F) (5) →3)Fuc(1→OPr (f3F23ff4ssss) 3→)-4-O-sulfo-Fuc(1→3
(f4F3f4f3f4f) →4)Fuc(1→3 (f3F4s) 3→)-4-O-sulfo-Fuc(1→OPr
(f4f3f4F3f4f) →4)Fuc(1→3 (F3f4ss) 4-O-sulfo-Fuc(1→3
(F4f2ss) 2-O-sulfo-Fuc(1→4 (f3F4ss) 3→)-4-O-sulfo-Fuc(1→OPr
(f4F2ss) 4→)-2-O-sulfo-Fuc(1→OPr (F3f3f4sss) (3) 4-O-sulfo-Fuc(1→3
(F4f3f2sss) 2-O-sulfo-Fuc(1→4 (f3F3f4sss) (3) 3→)-4-O-sulfo-Fuc(1→3
(f4F3f2sss) 4→)-2-O-sulfo-Fuc(1→3 (f3f3F4sss) (3) 3→)-4-O-sulfo-FucOPr
(f4f3F2sss) 3→)-2-O-sulfo-Fuc(1→OPr (F24ss3f2s) 2,4-di-O-sulfo-Fuc(1→3
(f4F3f4f2ssss) 4→)-2-O-sulfo-Fuc(1→3 (F234sss) 2,3,4-tri-O-sulfo-Fuc(1→OPr
(f4f3f4F2sss) 4→)-2-O-sulfo-Fuc(1→OPr (F234sss2f34ss) 2,3,4-tri-O-sulfo-Fuc(1→2
(f4f3F4f2ssss) →3)-2-O-sulfo-Fuc(1→4 (f234sss2F34ss) 2→)-3,4-di-O-sulfo-Fuc(1→OPr
(F23ff) →2,3)Fuc(1→OPr (F234sss3f24ss) 2,3,4-tri-O-sulfo-Fuc(1→3
(f3f→3F2←f) →2,3)Fuc(1→OPr (f234sss3F24ss) 3→)-2,4-di-O-sulfo-Fuc(1→OPr
(f3F23ff) (4) →3)Fuc(1→3 (f4s3F24ss) 3→)-2,4-di-O-sulfo-Fuc(1→OPr

(F4s3f24ss) 4-O-sulfo-Fuc(1→3

aStructural code explanation: Letter “f” denotes fucose residue, and “s” denotes O-sulfo group;
numbers stand to denote the position of either fucosylation and/or sulfation. Capital “F” de-
notes the residue in the given structure, whose chemical shifts values were used as a part of
the training set. All fucose units have α-L-configuration.

class when, in fact, they should be in different ones. Actually, the network can
be instructed to always put each pattern into its own unique class, but this
would mean that after the training each new pattern would be reported as
unclassified (i.e., the network would not be able to recognize anything except
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100 A.G. Gerbst et al.

what it had learned during the training). This aspect of ART networks’ behav-
ior is controlled by the parameter called vigilance, which is a real number lying
in the range between 0 and 1. It was found after some experiments that the
value of 0.55 suits our situation. However, even then, many patterns got into
unique classes. Lowering the value of vigilance led to putting actually different
patterns into the same classes, so it was decided to continue experiments with
the ANN under these conditions.

Initially only chemical shifts of synthetic compounds up to trisaccharides
were used as in the case of the feed-forward network. Testing the network
trained with the above vigilance showed that some higher oligosaccharides and
desulfated fucoidan from Fucus evanescens, as well as all sulfated fucoidans,
were poorly recognized. It is in correlation with the fact that the approxima-
tion of the NMR spectrum of polymers with that of di- and even trisaccharides
may be rather coarse.[19] However, with the use of the ART1 network, we could
afford adding chemical shifts from higher oligofucosides without the loss of
performance. After this was done, the validation was repeated with better re-
sults, which are presented in Table 2. The resulting training set is presented
in Table 3.

As can be seen from Table 2, employing the ART-type network, we were
able to correctly determine all the fragments found in the test polysaccharides.
This suggests that the work is continued using the ART network with the
inclusion of additional data into the training set.

CONCLUSIONS

Neural network analysis of 13C spectra of carbohydrates was explored. Two
types of ANNs were used, namely, three-layer back propagation ANN and
ART1-type ANN. It was shown that the back-propagation ANN gave unsat-
isfactory results when validated using real spectra of natural polysaccharides.
This failure is attributed to the very “general” nature of this type of ANN.
On the contrary, ART1-style networks seemed to work better. Spectra of three
polysaccharides both in natural forms and with sulfo groups removed were
successfully analyzed, which confirms that such an approach can be used for
the analysis of polysaccharides. However, ART1 networks seem to be very sen-
sitive to the scope of the training set. It is required that exactly the residues
found in polymers are included in the training set. Further work proceeds in
obtaining data for the residues that are now absent.
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11. Kühne, R.; Ebert, R.-U.; Schüürmann, G. Estimation of vapour pressures for hy-
drocarbons and halogenated hydrocarbons from chemical structure by a neural net-
work. Chemosphere 1997, 34, 671–686.

12. Handschuh, S.; Goldfuss, B.; Chen, J.; Gasteiger, J.; Houk, K.N. Steroid binding
by antibodies and artificial receptors: exploration of theoretical methods to determine
the origins of binding affinities and specifities. J. Comput. Aid. Mol. Des. 2000, 14, 611–
629.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
2
8
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



102 A.G. Gerbst et al.

13. Bilan, M.I.; Grachev, A.A.; Ustuzhanina, N.E.; Shashkov, A.S.; Nifantiev, N.E.;
Usov, A.I. Structure of a fucoidan from the brown seaweed Fucus evanescens C.Ag.
Carbohydr. Res. 2002, 337, 719–730.

14. Bilan, M.I.; Grachev, A.A.; Ustuzhanina, N.E.; Shashkov, A.S.; Nifantiev, N.E.;
Usov, A.I. A highly regular fraction of a fucoidan from the brown seaweed Fucus dis-
tichus L. Carbohydr. Res. 2004, 339, 511–517.

15. Riedmiller, M.; Braun, H. A direct adaptive method for faster back-propagation
learning: the RPROP algorithm. In Proceedings of IEEE international conference on
neural networks. 1993, ICNN 93.

16. Grossberg, S. Adaptive pattern classification and universal recoding: I. Parallel
development and coding of neural feature detectors. Biol. Cybern. 1976, 23, 121–134.

17. Grossberg, S. Adaptive pattern classification and universal recoding: II. Feedback,
expectation, olfaction, illusion. Biol. Cybern. 1976, 23, 187–202.

18. Carpenter, G.A.; Grossberg, S. A massively parallel architecture neural pattern
recognition machine. Comput. Vision Graph. 1987, 37, 54–115.

19. Grachev, A.A.; Gerbst, A.G.; Ustuzhanina, N.E.; Krylov, V.B.; Shashkov, A.S.;
Usov, A.I.; Nifantiev, N.E. Modeling of polysaccharides with oligosaccharides: how large
should the model be? (Focus Article) Mend. Commun. 2007, 17, 57–62.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
2
8
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1


